
Adv Comput Math manuscript No.
(will be inserted by the editor)

An algorithm for fast Hilbert transform of real

functions

R. Bilato · O. Maj · M. Brambilla

Received: date / Accepted: date

Abstract A simple and accurate algorithm to evaluate the Hilbert trans-
form of a real function is proposed using interpolations with piecewise–linear
functions. An appropriate matrix representation reduces the complexity of this
algorithm to the complexity of matrix-vector multiplication. Since the corema-
trix is an antisymmetric Toeplitz matrix, the discrete trigonometric transform
can be exploited to calculate the matrix–vector multiplication with a reduction
of the complexity to O(N logN), with N ×N the dimensionality of the core

matrix. This algorithm has been originally envisaged for self-consistent simu-
lations of radio-frequency wave propagation and absorption in fusion plasmas.

Keywords Hilbert transform · B–spline · Fast Fourier transform · Discrete
trigonometric transform

Mathematics Subject Classification (2000) 15B05 · 65T50 · 44A15

1 Introduction

The Hilbert transform on the real line,

HRf(x) =
1

π
p.v.

∫ +∞

−∞

f(y)

x− y
dy =

1

π
lim
ǫ→0+

∫

|y−x|>ǫ

f(y)

x− y
dy, (1)

R. Bilato
Max Planck Institute for Plasma Physics, EURATOM Association
Boltzmannstr. 2, 85748 Garching, Germany
E-mail: roberto.bilato(at)ipp(dot)mpg(dot)de

O. Maj
Max Planck Institute for Plasma Physics, EURATOM Association
Boltzmannstr. 2, 85748 Garching, Germany

M. Brambilla
Max Planck Institute for Plasma Physics, EURATOM Association
Boltzmannstr. 2, 85748 Garching, Germany

2 R. Bilato et al.

enters the coefficients of the wave equation describing electromagnetic waves in
fusion plasmas [1]. Specifically, in self-consistent simulations of plasma waves,
a loop is set up between a solver for the electromagnetic fields, which perturb
the plasma, and a solver for the velocity distribution of plasma particles, whose
Hilbert transform, in turn, determines the coefficients of the wave equation for
the electromagnetic fields.

In the development of the interface between the wave solver TORIC and the
Fokker–Planck solver SSFPQL [2], we have devised an algorithm for the Hilbert
transform, (we believe) novel at the time of [3]. Because of the ubiquitous-
ness of the Hilbert transform, particularly for the analysis of time-series [4–7]
(and references therein), we have later realized that this algorithm, properly
reformulated, can be of general interest.

The standard method of calculating the Hilbert transform implemented
in many commercial and open-source software is based on its relation to the
Fourier transform [8]. This method was originally proposed by Henrici, and
thus hereafter it will be referred to simply as the Henrici’s algorithm. It inherits
the complexity of the Fast Fourier Transform (FFT), i.e., O(N logN), with
N being the length of the signal. However, as observed e.g. in [9], Henrici’s
algorithm is affected by an error which becomes larger when the argument
approaches the extrema of integration (see for example Fig. (1.a) below).

A new method based on the Haar multiresolution approximation, whose
precision is superior, has been proposed by Zhou et al. [9]. A disadvantage
of Zhou’s approach, however, is the higher complexity, namely O(N2), which
plays against it when processing long signals. More recently, Micchelli and
co-workers have proposed a general approach based on the B–spline series
approximation, which combines the accuracy of Zhou’s method with the low
complexity of the FFT [10].

In Section 2, we present the algorithm we have developed few years ago [3],
originally inspired by Valeo [11]. The result is particularly simple and easily
implemented. In addition, the use of discrete trigonometric transforms (DTT)
reduces the complexity of the algorithm from O(N2) to O(N logN). Theo-
retical error estimates for the method are given in Section 3. In Section 4,
we discuss the numerical implementation based on the FFTW package [12], and
presents numerical experiments with test cases proposed in [9]. Numerical re-
sults for these test functions are compared to those obtained by an ad-hoc
implementation of the Henrici’s algorithm as well as of the linear-spline ver-
sion of the the method of Micchelli et al. [10].

2 Algorithm

In this section we describe the algorithm envisaged in [3] for the Hilbert trans-
form of a function f(x). Here, we proceed formally, mathematically precise
results being given in Section 3.

For h > 0, let τ = {xn = x0 + hn}Nn=0 be a grid of equally spaced N + 1
points, determining the closed interval Iτ = [x0, xN]. The grid τ should be

An algorithm for fast Hilbert transform 3

such that the function f(x) can be approximated by zero outside Iτ . Then,
for every interior point xk ∈ τ with k = 1, . . . , N − 1, we have

(
HRf

)
(xk) ≈

1

π
lim
ǫ→0+

N−1∑

n=0

∫

|y−xk|>ǫ
xn≤y≤xn+1

f(y)

xk − y
dy

=
1

π
lim
ǫ→0+

[∫ xk−ǫ

xk−1

+

∫ xk+1

xk+ǫ

]
f(y)

xk − y
dy

+
1

π

[
k−2∑

n=0

+

N−1∑

n=k+1

]∫ xn+1

xn

f(y)

xk − y
dy.

(2)

If the nodal values f(xk) of the considered function are known, on each
interval [xn, xn+1] the function f(y) is approximated by linear interpolation,

f(y) ≈ f(xn) +
f(xn+1)− f(xn)

h
(y − xn). (3)

Each contribution can now be evaluated analytically, and the approximated
Hilbert transform (2) becomes

(
HRf

)
(xk) ≈ − 1

π

{
f(xk+1)− f(xk−1)

+
N−1−k∑

n=1

[
−
(
1− (n+ 1)bn

)
f(xk+n) +

(
1− nbn

)
f(xk+n+1)

]

+

k−1∑

n=1

[(
1− (n+ 1)bn

)
f(xk−n)−

(
1− nbn

)
f(xk−n−1)

]}
,

(4)

where bn = log
(
(n+1)/n

)
. The right-hand side of (4) defines a linear operator,

which maps the vector of sample values F =
(
f(x0), f(xi), . . . , f(xN)

)
into the

approximate values of the Hilbert transform on interior grid points. Such an
operator is the proposed discrete Hilbert transform Hτ , with the subscript
denoting explicitly the dependence on the grid τ . In matrix form,

HτF = AFint +CFbnd, (5)

where the vector F has been split into its projection on internal nodes Fint =(
f(x1), . . . , f(xN−1)

)
and boundary points Fbnd =

(
f(x0), f(xN)

)
, whereas A

is a (N − 1)× (N − 1) antisymmetric Toeplitz matrix,

A =

a0 a1 · · · aN−3 aN−2

−a1 a0 · · · aN−4 aN−3

...
...

...
...

...
−aN−2 −aN−3 · · · −a1 a0

 , (6)

4 R. Bilato et al.

with

ak = − 1

π
·

0, for k = 0,

2b1, for k = 1,

(k + 1)bk − (k − 1)bk−1, for k > 1,

(7)

bk = log
(
(k + 1)/k

)
, (8)

and C is a rectangular (N − 1)× 2 matrix

C =

0 cN−1

−c1 cN−2

...
...

−cN−1 0

 , ck = − 1

π
(1− kbk). (9)

An antisymmetric Toeplitz matrix is completely defined by its first row. Thus
the evaluation of the N − 1 elements (a0, . . . , aN−2) is enough to complete
determine A, and that requires only N − 2 calculations of the logarithm.

In general the complexity of matrix-vector product involving matrices of
rank N is O(N2) [13]. This could be the bottleneck of (5). However, for
some special matrices, such as the Toeplitz ones, it is possible to use Dis-
crete Trigonometric Transforms (DTT) to perform the matrix-vector prod-
uct, whose complexity is thereby reduced to that of the fast DFT, namely,
O(N logN). A list of possible representations are given by Potts and Steidl
in [14]. In particular, we consider

A = CIV
N−1DSIV

N−1 − SIV
N−1DCIV

N−1, (10)

where D is a diagonal matrix

DN−1 = diag(d0, . . . , dN−2),

(d0, . . . , dN−2)
T = S̃III

N−1(a1, . . . , aN−2, 0)
T ,

where the superscript T denotes the transpose. For every integer n > 0, the
n× n matrices of discrete trigonometric transforms are

(
CIV

n

)
jk

=

√
2

n
cos

(
π
(2j + 1)(2k + 1)

4n

)
,

(
SIV
n

)
jk

=

√
2

n
sin

(
π
(2j + 1)(2k + 1)

4n

)
,

(
S̃III
n

)
jk

= (ǫnk+1)
2 sin

(
π
(2j + 1)(k + 1)

2n

)
,

(11)

with j, k ∈ {0, . . . , n− 1}, and

ǫnk =

{
1/

√
2, for k = 0, n,

0, otherwise.
(12)

The matrix-vector products involving matrices CIV
N−1, S

IV
N−1, and SIII

N−1 have
the same complexity as the FFT, namely O(N logN). As a consequence, the
complexity of all matrix-vector products are not worse than O(N logN).

An algorithm for fast Hilbert transform 5

3 Error estimates

The numerical Hilbert transform (5) has been obtained via piecewise linear
interpolation of the sampled function, and, in this sense, it is a special case
of the method proposed by Micchelli et al. [10], in which the approximation
of the Hilbert transform is sought in a finite-dimensional subspace of L2(R)
spanned by the Hilbert transform of B–splines.

In our case, however, the Hilbert transform is collocated on the same grid
τ where the considered function is sampled, allowing us to remove explicitly
the logarithmic singularities in the Hilbert transform of the interpolant. In
the case of Micchelli et al. [10] the numerical Hilbert transform can also be
collocated on a grid, which, however, cannot be the sampling grid τ , as the
Hilbert transform of the B–splines is singular at the sampling nodes.

For such collocated numerical transform (5), the theoretical error is nat-
urally estimated at the discrete level directly, as opposite to error estimates
of interpolants in L2. This will require the control of the error in a stronger
norm than the usual L2 error estimates.

First, we consider the error due to the restriction of f to the interval Iτ .

Lemma 1 If I = [a, b] ⊂ R is any closed bounded interval and f ∈ L2(R),
∣∣∣∣HRf(x)−

1

π
p.v.

∫

I

f(y)

x− y
dy

∣∣∣∣ ≤
1

π

(2

dist(x, Ic)

)1/2

‖f‖L2(Ic), (13)

almost everywhere in (a, b). Here, dist(x, Ic) = min{x−a, b−x} is the distance
of the point x ∈ I from the complement Ic = R \ I.

Proof The result follows from Schwartz inequality in L2(Ic), namely,

∣∣∣∣HRf(x)−
1

π
p.v.

∫

I

f(y)

x− y
dy

∣∣∣∣ ≤
1

π

(∫

Ic

(x− y)−2dy

) 1
2
(∫

Ic

|f(y)|2dy
) 1

2

,

almost everywhere in I, and the first factor on the right-hand side is bounded
by

√
2/dist(x, Ic).

Let us notice that the foregoing estimate does not control the truncation
error near boundary points. Nonetheless, with I = Iτ and J = [x1, xN−1] ⊂ Iτ ,
Lemma 1 amounts to a uniform bound of the truncation error for x ∈ J , but
with constant scaling like 1/

√
h.

Next we consider the discretization error. Since standard results about
linear interpolation are used, we shall consider those functions f ∈ L2(R)
having a C2 restriction f |Iτ to the closed interval Iτ .

Let χτ be the characteristic function of the interval Iτ , i.e., χτ (x) = 1 for
x ∈ Iτ and χτ (x) = 0 elsewhere, and let fτ be the linear interpolant

fτ (x) = f(xk) + (x − xk)f [xk, xk+1],

for x ∈ [xk, xk+1), k ∈ {0, . . . , N − 1}, and fτ (x) = 0 when x 6∈ Iτ . Here,
f [xk, . . . , xk+j] denotes the standard divided differences. We compare the

6 R. Bilato et al.

Hilbert transform of χτf and fτ . In L2, HR is an isometry, hence we just
have ‖HR(χτf − fτ)‖L2(J) ≤

√
|J | · ‖χτf − fτ‖L∞ and, by interpolation the-

ory, ‖HR(χτf − fτ)‖L2(J) = O(h2), as shown by Micchelli et al. [10]. For the
control of the point-wise error, however, we find O(h).

Lemma 2 Let τ = {x0, . . . , xN} and Iτ be as in Section 2, with step size

h > 0, f ∈ L2(R) with f |Iτ ∈ C2(Iτ), and χτ and fτ given above. Then,

HR(χτf − fτ) is continuous and

sup
x∈R

∣∣HR(χτf − fτ)(x)
∣∣ ≤ Ch, (14)

for a constant C > 0 independent of the step size h.

Proof Let us start observing that g = χτf−fτ is continuous, vanishes on nodes
xk ∈ τ and it has a piecewise continuous derivative. Hence, g ∈ H1(R) and
HRg ∈ H1(R) in view of the property that (HRg)

′ = HRg
′. Here, Hs = Hs(R),

s ∈ R, are the standard Sobolev spaces. It follows thatHRg is continuous (actu-
ally, it is Hölder-continuous of index α = 1/2, [15, Chapter 4, Proposition 1.5]).
In addition,

HRg(x) =
1

2π

∫
eixξ[−i sgn(ξ)]ĝ(ξ)dx,

and
∣∣HRg(x)

∣∣ = 1

2π

∣∣∣
∫

eixξsgn(ξ)ĝ(ξ)dx
∣∣∣

≤ 1

2π

(∫
dξ

1 + ξ2

) 1
2
(∫

(1 + ξ2)|ĝ(ξ)|2dξ
) 1

2

= C′‖g‖H1 ,

where ĝ is the Fourier transform of g. The H1-error of the piecewise linear
interpolation of f ∈ C2 is ‖g‖H1 = O(h), hence, |HRg| ≤ Ch, as claimed.

The combination of Lemma 1 and Lemma 2 together with the observation
that (HτF)i = HRfτ (xi) for i = 1, . . . , N − 1 gives a general error estimate
for the numerical Hilbert transform HτF . Specifically, since f |Iτ is of class
C2, HRf is continuous on the interior of Iτ and for every interior node xi,
i = 1, . . . , N − 1, one has

∣∣HRf(xi)− (HτF)i
∣∣ ≤

∣∣HR(χτf − fτ)(xi)
∣∣ +

∣∣HRf(xi)−HR(χτf)(xi)
∣∣.

On the right-hand side, we find the sum of discretization and truncation errors.

Theorem 1 Let τ = {x0, . . . , xN} and Iτ be as in Section 2, with step size

h > 0, and let f ∈ L2(R) with f |Iτ ∈ C2(Iτ). Then

max
xi∈τ

∣∣HRf(xi)− (HτF)i
∣∣ ≤ Ch+

1

π

√
2

h
‖f‖L2(Ic

τ
), (15)

for a constant C > 0 independent of the step size h.

In Section 4, a number of numerical experiments are presented for the same
test cases considered by Zhou et al. [9] and Micchelli et al. [10]. For such cases
we find that the error estimate (15) is not sharp.

An algorithm for fast Hilbert transform 7

4 Numerical Implementation and Experiments

The main steps of the algorithm we have implemented are summarized in Ta-
ble 1 with the corresponding complexity. In estimating the complexity, only
the multiplications are counted, whereas additions and logarithms necessary to
build (a0, a1, . . . , aN−2) are neglected for they are an overhead of complexity
O(N). If the Hilbert transform is used to analyze equal-length sub-intervals of

Operation Complexity

Diagonal matrix D (N − 1) log(N − 1)

Vs = SIV

N−1
Fint and Vc = CIV

N−1
Fint 2× [(N − 1) log(N − 1)]

Ws = D · Vs and Wc = D · Vc 2× (N − 1)

CIV

N−1
· Vs and SIV

N−1
· Vc 2× [(N − 1) log(N − 1)]

CFbnd 2 log(N − 1)

Table 1 Main steps of the algorithm implemented to evaluate (5) with A decomposed
according to (10). The complexity is calculated with respect to the number of multiplications.

a long data series, the evaluation of the matrix D needs to be done only once
in the initialization phase.
The best performances of the FFT are obtained when the dimensionality of
the problem is an integer power of 2 [13]. Thus, in our examples (N − 1) is
chosen to be integer of power 2, and at each increase of N the sub-intervals are
halved. For the following analysis and testing, we consider the set of functions
proposed in [9,10], and reported in Table 2. For the FFT and DTT we use the
FFTW3 package [12].
Figure 1.a shows the Hilbert transform of the first function calculated by the
present method, by linear splines as proposed in Micchelli et al. [10], and by
Henrici’s algorithm, together with the exact expression. The proposed method,
the linear spline method and the exact solution are overlapped within the ac-
curacy of the plot. The computational time is plotted in Figure 1.b as function
of N logN , and it scales linearly with N logN as expected from Table 1. In
this respect, the three algorithms have the same complexity scaling. According
to Theorem 1, a measure of the error is the maximum norm (15), namely,

Eτ = max
xi∈τ

∣∣HRf(xi)− (HτF)i
∣∣ . (16)

Figure 2.a shows Eτ of the first function of Table 2 versus the step size h
and for various lengths of the interval Iτ : when h decreases below a threshold
the truncation error of Lemma 1 takes over, and Eτ slightly increases when
decreasing further h. This threshold decreases with the inverse of the length
of the interval Iτ , for the residual ‖f‖L2(R\Iτ) decreases when increasing the
extension of Iτ . Figure 2.b shows Eτ for the same Iτ intervals in the case of the

8 R. Bilato et al.

Function Hilbert transform
f(x) (HRf)(x)

1. 1
1+x2

x
1+x2

2. 1
1+x4

x(1+x2)
√

2(1+x4)

3. sinx
1+x2

1/e−cos x
1+x2

4. sinx
1+x4

1
1+x4

[

e−1/
√

2 cos 1
√

2
+ e−1/

√

2 sin 1
√

2
x2 − cos x

]

5. e−x2

− 2
√

π
e−x2 ∫ x

0 et
2

dt = −e−x2

Im{erfc(−i x)}

Table 2 Functions with their Hilbert transform considered in this work. For the error
function we have used the routine WOFZ of Poppe and Wijers [16].

�30 �20 �10 0 10 20 30
x

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

H(
f)

(a)
f(x) =1/(1+x2)

Proposed
linear spline
Henrici
Exact

0 10000 20000 30000 40000 50000 60000 70000 80000
N log N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CP
U

tim
e

[a
.u

.]

(b)
f(x) =1/(1+x2)

Fig. 1 (a) Hilbert transform of the function f(x) = 1/(1 + x2) calculated by using Eq. (5);
the proposed algorithm, linear splines, and the exact transform are overlapped within the
accuracy of the plot. (b) CPU time as function of the number of points N .

fifth function of Table 2: since this function decreases rapidly, the truncation
error is negligible for the range of parameters here considered.

As already observable in Figure 2, when the truncation error (13) is not
dominant, the convergence rate of the error is O(h2) for the present algorithm.
For sake of comparison, Figure 3 shows the errors of the the present algorithm
together with those of Henrici and Micchelli for the functions of Table 2.
The convergence rate O(h2) of the present algorithm is confirmed also for the
other functions of Table 2, and it is equal to the convergence rate of the linear-
spline version of the the method of Micchelli et al. [10]. In the case of Henrici’s
method, the convergence rate is in general slow, as already discussed in [9],
because of the large errors at the points close to the extrema.

An algorithm for fast Hilbert transform 9

10-3 10-2 10-1 100

h

10-6

10-5

10-4

10-3

10-2

10-1

E

�

(a)
f(x) =1/(1+x2)

I� =[�120,120]

I�=[�60,60]

I�=[�30,30]

O(h2)

10-3 10-2 10-1 100

h

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E

�

(b)
f(x) =e�x

2

I� =[�120,120]

I�=[�60,60]

I�=[�30,30]

O(h2)

Fig. 2 Error (16) for the first (a) and the last (b) function of Table 2 as versus the step size
h, and for three lengths of the interval. The dashed line is the 2nd-order reference scaling.

10-2 10-1

h

10-6

10-5

10-4

10-3

10-2

10-1

E

�

(a)
f(x) =sin(x)/(1+x2)

proposed
linear spline
Henrici
O(h2)

10-2 10-1

h

10-6

10-5

10-4

10-3

10-2

10-1

E

	

(b)
f(x) =sin(x)/(1+x4)

proposed
linear spline
Henrici
O(h2)

10-2 10-1

h

10-6

10-5

10-4

10-3

10-2

10-1

E

(c)
f(x) =1/(1+x4)

proposed
linear spline
Henrici
O(h2)

10-2 10-1

h

10-6

10-5

10-4

10-3

10-2

10-1

E

�

(d)
f(x) =e�x

2

proposed
linear spline
Henrici
O(h2)

Fig. 3 Error (16) for the functions of Table 2 with Iτ = [−60, 60].

5 Conclusions

We have presented a new algorithm (5) for the Hilbert transform on the real
line, characterized by simplicity combined with high numerical accuracy. Its
numerical bottleneck is the matrix-vector multiplication AFint. However, since
A is an antisymmetric Toeplitz matrix, the matrix-vector multiplication can
be performed with complexity O(N logN) by exploiting the decomposition
of A in discrete trigonometric matrices (2). The present algorithm offers the
same advantages of the linear-spline version of the the method of Micchelli

10 R. Bilato et al.

et al. [10], namely high precision and low complexity, although it is not as
general as that in [10]. The main difference with Micchelli’s algorithm is that
the present evaluates the Hilbert transform on the same grid τ where the
function is sampled. We believe that the simplicity of its implementation might
be proved useful for many practical applications of the Hilbert transform.

Acknowledgements We are grateful to the referees for their valuable advice on how to
improve the formulation and to complete the error analysis. We wish to thank Marco Restelli
and Juan Vicente Gutierrez Santacreu for the discussions on the error analysis.

References

1. M. Brambilla, Kinetic Theory of Plasma Waves, Oxford University Press, USA, 1998.
2. R. Bilato, M. Brambilla, O. Maj, L. Horton, C. Maggi, J. Stober, Simulations of com-

bined neutral beam injection and ion cyclotron heating with the toric-ssfpql package,
Nuclear Fusion 51 (10) (2011) 103034.
URL http://stacks.iop.org/0029-5515/51/i=10/a=103034

3. M. Brambilla, R. Bilato, Advances in numerical simulations of ion cyclotron heating of
non-maxwellian plasmas, Nuclear Fusion 49 (8) (2009) 085004.
URL http://stacks.iop.org/0029-5515/49/085004

4. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C.
Tung, H. H. Liu, The empirical mode decomposition and the hilbert spectrum for non-
linear and non-stationary time series analysis, Proceedings: Mathematical, Physical and
Engineering Sciences 454 (1971) (1998) pp. 903–995.
URL http://www.jstor.org/stable/53161

5. N. E. Huang, Z. Wu, A review on hilbert-huang transform: Method and its applications
to geophysical studies, Rev. Geophys. 46 (2008) 8755–1209.

6. J. C. Goswami, A. E. Hoefel, Algorithms for estimating instantaneous frequency, Signal
Processing 84 (8) (2004) 1423 – 1427. doi:10.1016/j.sigpro.2004.05.016.
URL http://www.sciencedirect.com/science/article/pii/S0165168404001033

7. L. Knockaert, T. Dhaene, Causality determination and time delay extraction by means
of the eigenfunctions of the hilbert transform, in: Signal Propagation on Interconnects,
2008. SPI 2008. 12th IEEE Workshop on, 2008, pp. 1 –4. doi:10.1109/SPI.2008.4558337.

8. J. A. C. Weideman, Computing the hilbert transform on the real line, Mathematics of
Computation 64 (1995) 745.

9. C. Zhou, L. Yang, Y. Liu, Z. Yang, A novel method for computing the hilbert trans-
form with haar multiresolution approximation, Journal of Computational and Applied
Mathematics 223 (2) (2009) 585 – 597. doi:10.1016/j.cam.2008.02.006.
URL http://www.sciencedirect.com/science/article/pii/S0377042708000526

10. C. Micchelli, Y. Xu, B. Yu, On computing with the hilbert spline transform, Advances
in Computational Mathematics (2012) 1–2410.1007/s10444-011-9252-x.
URL http://dx.doi.org/10.1007/s10444-011-9252-x

11. J. C. Wright, E. J. Valeo, C. K. Phillips, P. T. Bonoli, M. Brambilla, Full wave sim-
ulations of lower hybrid waves in toroidal geometry with non-maxwellian electrons,
Communincations in Computational Physics 4 (2008) 545.

12. M. Frigo, S. Johnson, The design and implementation of fftw3, Proceedings of the IEEE
93 (2) (2005) 216 –231. doi:10.1109/JPROC.2004.840301.

13. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in
Fortran, Cambridge University Press, 1992.

14. D. Potts, G. Steidl, Optimal trigonometric preconditioners for nonsymmetric
toeplitz systems, Linear Algebra and its Applications 281 (13) (1998) 265 – 292.
doi:10.1016/S0024-3795(98)10042-3.
URL http://www.sciencedirect.com/science/article/pii/S0024379598100423

15. M. E. Taylor, Partial Differential Equations I: Basic Theory, Springer, New York, 1996.
16. G. P. M. Poppe, C. M. J. Wijers, More efficient computation of the complex error

function, ACM Trans. Math. Softw. 16 (1) (1990) 38–46.

